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Recent work has been carried out on the exchange energy density E&) of a ten-electron 
atomic ion in the (bare Coulomb) limit of large atomic number 2 [Howard, I. A. et al. 
(2000). Phys. Rev. A ,  62,0625121. This analytical study of EJr) was made possible by the 
existence of a closed form of the first-order (idempotent) density matrix (IDM). 

Here, some generalizations are effected to a central potential energy V(r) which (a) 
localizes the ten electrons and (b) yields closed K and L shells for these ten electrons 
occupying the lowest eigenstates with spin compensation. In particular, it is shown that 
pshell properties alone determine the IDM in this example of a confined inhomo- 
geneous electron liquid. 

Keywork Inhomogeneous electron liquid; Density matrix 

I. BACKGROUND AND INTRODUCTION 

In very recent work, the exchange energy density ~ , ( r )  of a ten-electron 
atomic ion in the (bare Coulomb) limit of large Z has been calculated 
analytically [l]. This has proved possible because of the existence of a 
relatively simple analytical form of the first-order idempotent density 
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48 I. A. HOWARD et al. 

matrix [IDM] 7(r, r‘), namely [2] 

The simplicity of the variables in Eq. (1.1) has to do with the 
existence of an additional constant of motion, the so-called Runge- 
Lenz vector 131 for the bare Coulomb field limit underlying Eq. (1.1). 
In that equation, p(r) is the bare Coulomb density, while F(r) is related 
to this quantity plus the single-particle kinetic energy density, tb], by 

1 lm ~ ( r )  = -p”(r )  - - - t ( r ) .  
24 3 A2 

In Eq. (1.2)¶ t(r) is defined by the (always positive) form analogous to 
(V$J)~ in terms of wave functions. In fact, in the bare Coulomb limit of 
Ref. [2], 

for doubly occupied states, where Z is the (large) atomic number in 
this (non-relativistic) theory. 

Defining the total kinetic energy T as 

T = t(r)dr (1.4) J 
it was already shown in Ref. [2] that 

In this (bare Coulomb field) example, Eq. (1.5) is known to represent 
the total kinetic energy as a s u m  of To (I= 0) and TI (I= 1) contri- 
butions¶ the result To being simply the first term on the right-hand side 
of Eq. (1.5), as was established in Ref. [4]. 

The aim of the present work is to effect the generalization of Eqs. 
(1.1) and (1.5) to allow for a central field defined by a one-body 
potential energy V(r). 
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DENSITY MATRIX FOR INHOMOGENEOUS LIQUID 49 

II. FIRST-ORDER DENSITY MATRIX 
FOR TEN ELECTRONS (CLOSED K PLUS L SHELLS) 
FOR A GENERAL CENTRAL FIJlLD 

For, say, Ne-like ions with atomic number Z, described in density 
functional theory (DFT) by a one-body potential V(r) having the form 

where E&] is the (as yet unknown) exchange-correlation energy 
functional, Schrodinger's one-electron equation with V(r) inserted 
(equivalent to the so-called Slater-Kohn-Sham equations [5,6] if that 
V(r) giving the exact ground-state density is known) yields wave- 
functions $Jlo(r), $ ~ 2 ~ ( r ) ,  and p-state radial wavefunction &&) times 
spherical harmonics Yl,,,(B, 4), with m = - 1,0, and 1. Taking Rzl(r) to 
be normalized to (1/4~), to account for the spherical harmonic pre- 
factor and for the three p-states, one can write the 1DM as 

But, (recalling Eq. (1.1) in the bare Coulomb limit system of ten 
electrons) we know that 

lr - r'12 = (x - 2)' + 01 - y'12 + (z - z'12 
= (2 + y2 + 2) + (-1(2 + y" + P)  - 2 [ x 2  + yy' + zz'] (2.3) 

and hence Eq. (2.2) is readily rewritten as 

The shape of Eq. (2.4) is valid for general V(r) and the important fact 
which it reveals is that the function multiplying the term Ir-f is 
factorizable. 
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Returning to Eq. (1.1) and using the explicit (bare Coulomb) form 
(1.3) one sees that 

and this is just the (appropriately normalized) radial wavefunction 
RZl(r) of the p electrons divided by r. In marked contrast, r(r, r') in the 
general 10-electron form (2.4) of the 1DM for a general central 
potential energy V(r) is not factorizable and is of a more complicated 
form than f(r). It is therefore important to enquire what properties 
associated with the 1DM (2.4) can be characterized byf(r), which in 
turn determines the p shell ground state properties. 

Evidently from Eqs. (2.2)-(2.4), one can write 

r(r,  4 = Fo(r ,  4 + 3f(r)f(+)(? + 4 (2.6) 

where r0(r, r') is just the s-state (I = 0) density matrix. Clearly it follows 
that 

r(r, +)I,=, =- p ( r )  = P I N  + 6?.f2(r) (2.7) 

the p-wave density PI= 1 (r) E p&) being given from Eq. (2.7) by 

PI ( r )  = 6?f2(r). (2.8) 

Thus Eq. (2.6) can be rewritten in terms of the p (I= 1) density as 

(2.9) 

Putting f = r in Eq. (2.9) yields back simply p(r) = po(r) +pl(r), as it 
must. Finally, we show in the latter part of Appendix C that $qo and 
q20, which determine the s-state matrix Po@, r') through Eqs. (2.2) 
and (2.6), are both determined by pl (r ) .  Hence, in principle, r(r, f )  in 
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Eq. (2.9) is a functional of pl (r )  and thus, through (2.4) and (2.8), so is 
r(r, 0 

III. SUMMARY AND FUTURE DIRECTIONS 

The shape of the first-order density matrix (1DM) y(r, f )  for filled K 
and L shells is settled by Eq. (2.4), with the functionf(r) determined 
by the p-state electron density through Eq. (2.8). All the angular 
dependence is subsumed into the factor Ir -r'12, for any general central 
potential energy V(r). Furthermore, a proof has been given that the 
function F(r, 8) in Eq. (2.4) is also completely determined, but now in 
principle, by the p-state density pl(r). However, part of this 
dependence can be displayed explicitly, as in Eq. (2.9). 

It is obviously tempting, for the future, to contemplate variational 
calculations based on the 1DM discussed in the present study, both for 
Ne-like atomic ions and for the 'almost spherical' molecule CH4 (see 
March, 1952 [8], for the simplest density functional theory [DFT] of 
such a molecule, namely the Thomas-Fermi method). In such a 
variational aproach, one would want to exploit the fact, proved here, 
that y(r, f )  is determined in principle solely by thep-state density pl (r ) .  
However, we must stress that, for a valid variational method based on 
the 1DM generated by a given V(r) (ideally given by Eq. (2.1) in terms 
of the exchange-correlation energy functional Ex&], if it should 
become known), the 1DM characterized by the p-state density pl(r)  
must be constructed to be an idempotent IDM, i.e., it must satisfy 
q = y .  Even then, by direct use of such a IDM, one could not 
transcend the Hartree-Fock ground-state energy without knowing the 
energy functional, the essential (unknown) part of which is, of course, 
Ex&] in Eq. (2.1). 
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IV. APPENDIX A SSTATE AND TOTAL 
KINETIC ENERGY DENSITIES 

The purpose of this Appendix is to obtain expressions for both the s- 
state kinetic energy density t,(r) and for the total kinetic energy density 
r(r). The former will be obtained using Ref. [7] and is valid for any 
number of s-states and for a general central potential energy V(r). We 
use throughout the positive definite forms (corresponding to the wave 
function expression (1/2) (V$)’) of ts(r) and t(r). 

A.l. s-state Kinetic Energy Density rAr) 

From what is essentially the differential virial equation for s-states we 
find 

a 18 1 rz -(r2rs(r)) - - - (?pr )  +-p: = - - - p , ~ ’ ( r ) .  ar 8 ar 4 2 (Al . l )  

This equation, valid for any number of occupied s-levels and any 
central potential V(r), can be integrated to yield 

This result becomes simple for the bare Coulomb field case, for which 
V(q) = Z / d ,  and we also have the spatial generalization of Kato’s 
theorem: 

(A1.3) 
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Then the final term in Eq. (Al.2) can be readily evaluated and hence in 
this limiting case Eq. (A1.2) simplifies to read 

(A1.4) 

But also, for a given central potential energy V(r),  t,(r) can be 
calculated from Eq. (Al.2) without recourse to off-diagonal informa- 
tion. Eq. (A1.2), however, it should be stressed, is not of DFT form 
since V(r)  enters in an essential manner. 

A.2. Total Kinetic Energy Density t(r) for Spin-compensated 
K +  L Shell Occupancy Only 

Using Eq. (8) of Ref. [7], which is, however, essentially a one-dimen- 
sional formalism, and the equation for r, in Section A.l, one finds, after 
remembering that the truly three-dimensional t(r) in the present paper 
differs from the definition in Ref. [7] by ( 1/4)V2p, and after some con- 
siderable manipulation, the result 

? ' '-" '?pV'. (A2.1) 
a 
ar 8 4 4  r 2  
- [&I - + -p" + -p' - p, + - - - 

However, we must note here first that in Appendix B, differential 
equations for p and p, are also constructed for this 10-electron prob- 
lem. Secondly, for the Coulomb field limiting system, d ( r )  = - 2Zp, 
and hence it is then possible to eliminate p,(r) from Eq. (A2.1). 

V. APPENDIX B DIFFERENTIAL EQUATIONS 
FOR 5' AND P-STATE DENSITIES 

For the p-states, since we have pl (r )=6rzfz (r )  or f ( r )  = p:I2/  
&r = R21 ( r ) / r ,  we can write the radial Schrodinger equation (for 
I =  1) as 
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with .cZ1 the eigenvalue in the potential V. Rearranged and multiplied 
by pfr2, this becomes 

For the s-states, we can write po(r) = 2(&0(r) + &o(r)), so that, using 
the radial Schrodinger equation and the definition of the s-state kinetic 
energy to(r) = h2(f lo  + G0)/m, we have 

Taking a further derivative then yields 

(B.4) 

VI. APPENDIX C: 'EQUATION OF MOTION' 
FOR r(R, R') IN EQ. (2.9) 

Allowing the Laplacian V; to act on r(r, f )  in Eq. (2.9) yields, after a 
short calculation, 
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and therefore, by subtraction, 

Hence, defining rl = r - r0, it follows that 

where the functional F is known from Eq. (C.3). This is the most 
important qualitative conclusion of this Appendix: the off-diagonal p 
contribution to r(r, f )  is determined solely by pl(r). Indeed, this is 
already evident from Eqs. (2.7) and (2.8) of the main text. 

Returning briefly to the bare Coulomb field example in Section 1, if 
we write rRnl= PnI then March and Santamaria [2] show that 

)/?, that FnI satisfies 
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This shows that P,, is determined by P,,,, for any central potential V(r). 
Now for this example, p1 = 6Ri1 = 6Pi1/?, or P21 = rp!’2/&, and so 

Now since we know that 

1 d2 2m 
-- (r&) + -[&no - V ( r ) ] R d  = 0,  
r d 9  ti2 

we can write 

P;b 2m 2m Pio 2m 
+-E10=-V(r)  =-+-& 

PlO A2 fi2 p20 ti2 2o 
- 

(C.10) 

(C. 11) 

or 

showing that +lo is determined by p1 to within a constant. Hence, 
r(r, r‘) in Eq. (2.5) is determined by p&) (and boundary conditions). 
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